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Activity and Osmotic Coefficients of Dilute Sodium Chloride

Solutions at 273 K
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Department of Chemical Technology, Lappeenranta University of Technology, P.O. Box 20, SF-53851 Lappsenranta, Finland

The cryoscopic data reporied in the Iiterature for aqueous
NaCl solutions were systematically recaiculated. In these
calculations, it was found that most of the measured
freezing points up 1o the molallty of 0.45 mol-kg™' can be
predicted within experimental error by a two-parameter
equation of the Hiickel type. The two parameters of this
Hiickel equation were determined from the resuits of the
most accurate freezing point measurements found for
NaCl solutions In the literature. With these parameter
values, accurate estimates of the activity and osmotic
coefficlents of NaCl solutions at 273 K can be obtalned.
These values, In addition to the recommended freezing
point depressions, have been tabulated at rounded
molalities. The standard deviations for the estimated
values have been presented graphically and were
computed by using the recently developed nonparametric
Jackknife method.

Introduction

It is wellkknown that the most rellabie activity coefficients of
dilute aqueous solutions of akall-metal halides at different tem-
peratures are obtained from measurements on appropriate
concentration cells with transference. In our previous studies
(7), it has been shown that the existing measured results of the
celis of this kind at 298 K can be successfully predicted by a
two-parameter equation of the Hiickel type for the activity
coefficients. In most cases, this concentration cell method has
been used only in such solutions where the molality is less than
about 0.1 molkg-!. When activities of less dilute alkali-
metal-sait solutions are determined, the isoplestic method is
most often used. The difficulty in applying this method is that
the method needs a reference electrolyte and the activities of
the interesting electrolyte alone cannot thus be studied. Another
potentially accurate method to study the thermodynamics of
less dilute saft solutions is the cryoscopic method. This method
was very popular at the beginning of this century, and a number
of precise cryoscopic data of different salt solutions have been,
therefore, reported in the literature.

In the wide recaiculation work carried out by Hamer and Wu
(2) and by Pitzer and Mayorga (3), the activities of unl-univalent
electrolytes were determined for aqueous solutions at 298 K.
Because of the choice of this temperature, the freezing point
data had to be omitted from the caiculations. No recent study,
as far as we know, has been reported in literature where the

existing freezing point results of uni-univalent electrolytes have
been collected and critically analyzed. In the present paper,
an analysis of this kind is performed for NaCl solutions.

According to our understanding, the generally accepted ac-
tivities for NaCl solutions at 273 K have not been reported in
the literature. The most reliable values so far have been
presented by Scatchard and Prentiss (4), on the basis of their
freezing point determinations, and by Platford (5), on the basis
of his isoplestic studies. The values of these two origins do not,
unfortunately, agree with each other as well as desired. At the
molality of 0.1 mol-kg™', for example, Scatchard and Prentiss
presented the value of 0.9337 for the osmotic coefficient and
the Platford vaiue is 0.931.

Silvester and Pitzer (6) have developed for the activities of
NaCl solutions a very general multiparameter equation which
covers wide ranges of molalities and temperatures. We tested
the validity of this equation at 273 K and used it to predict the
measwred freezing points of this electrolyte at different molalities
(see below). According to our calculations, however, the pre-
dictions of this equation are systematically too high above the
molality of 0.15 molkg™'. At 0.8 molkg™!, e.g., the error Is
about -0.02 K, and this is a value which by far exceeds the
experimental precision of the best freezing point determinations
presented in the fiterature (this precision has been probably well
below £0.0005 K).

In the present article, we apply the above-mentioned Hiickel
equation to the existing freezing point data measured in NaCl
solutions and show that even the most accurate experimental
cryoscopic results of NaCl solutions can be predicted aimost
completely up to the molality of 0.45 mol-kg™! by the Hiickel
equation. In addition, our preliminary calculations with the
cryoscopic data reported by Scatchard and his co-workers (4,
7~ 10) show that the activities of all 21 electrolytes considered
in those studies can also be correlated to the molalities by a
simple equation of the Hiickel type. Usually these activities can
be predicted within experimental error at least up to the molality
of 0.3 molkg™", but in the best cases this equation applies
satisfactorlly near the molality of 1.5 mokkg™'. In the previous
literature, such simple equations as the Hiickel equation are
seldom used above the molality of about 0.1 mol-kg™'.

Equations and Estimation of the Hiickel Parameters

The Hiickel equation for the activity coefficlent (v4) of a
uni-univaient electrolyte can be written in the form presented
by Pan (77):
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From eq 1, the following equation can be derived for the os-
motic coefficient ¢:

_ o
(Ba*y’m

¢=1 [(1+Ba*m¥)-2In(1+ Ba*m"?) -

(1+ Ba*mVy ] + Mh- 1)m (2)

In egs 1 and 2, mis the molality of the solution, M, Is the molar
mass of water (=0.018015 kg-mol™"), and « and 8 are the
Debye-Hiickel constants (on the molality scale at 273 K their
values are, according to Archer and Wang (72), 1.1293 (kg/
mol)'/2 and 3.245 (kg/mol)'’? nm™", respectively). In these
equations, moreover, the two parameters depending on the
electrolyte are the ion-size parameter a * and the hydration
number h. On the other hand, the Pitzer equation (6) for the
osmotic coefficient of a uni-univalent electrolyte has the form

¢ =

Aanz
- m + (8% + B‘e""’""')(m/m") + C*’(m/m")z

3

In this equation m® = 1 mokkg™', b = 1.2 (kg/mol)'?, ap =
2.0 (kg/mol)'/%, and, at 273 K, A, = 0.377 (kg/mol)"’2. Ac-
cording to Silvester and Pitzer (6), the electrolyte parameters
8%, 8", and C*¥ depend on the temperature by equations con-
taining altogether 12 parameters. With the values tabulated in
that paper for these parameters, the following values can be
calculated for 8%, 81, and C¥ at 273 K: 0.0532, 0.2496 and
0.0044, respectively. Another recent application of the Pitzer
equation has been presented by Thurmond and Brass (73) in
their calorimetric study concerning supercooled NaCl solutions.
These workers present for the parameters 38°, 87, and C¥ such
equations which contain entirely 15 parameters. The following
values can be obtained from these equations at 273 K: 8° =
0.0442, 8' = 0.1893, and C* = 0.0061.

When osmotic coefficient ¢ is used, the following relationship
can be thermodynamically derived between the freezing point
depression (AT,) and the molality of the solution:

2RT,*M,m¢ N

T 2RM me + AH,, /T,

AC, AT, + AC,(Ty" - AT) In [(T," - AT/ T¢*]
2RMm¢ + AH, /T,

where T,* is the freezing point of pure water (l.e. 273.15 K) and
T, that of the solution, AH,, is the molar enthalpy of fusion of
water at T(* (=6009.5 Jomol™'; see Osborne (74)), AC, is the
difference between the molar heat capacities of water as liquid
and as solid at 101.325 kPa and at T,* (this difference is 37.87
J*K-1:mol-'; see Osborne (74) and Osborne et al. (75)), and R
is the gas constant (=8.3145 J.K-:mol""). We verified that
within the limited temperature range used in the freezing point
experiments, AC, can be regarded as constant since the in-
fluence of the temperature corrections of AC, on the AT,
values is insignificant.

The advantage of eq 4 in freezing point data analysis is that
it allows the direct comparison of the predicted values to the
observed experimental values. If osmotic coefficients or some
other derived values were used to compare the fit results with
the experimental data, as often is done, there is always a
danger that some relevant information is lost. A minor disad-
vantage of the form of eq 4 is that AT, is also on the right-hand
side and some Iterative calculations are, therefore, needed
when the equation is used to estimate this quantity.
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To estimate the Hiickel parameters 2 * and hin eqs 1 and
2 from the experimental data, the sum of squared prediction
errors (S) was minimized as follows. Systematically varied
values were given for a * and h, and the predictions of the AT,
values were estimated from eq 4 (by using eq 2 for ¢) with
these parameter values for each experimental molality. For
each pair of the values of a * and h, the sum of squared pre-
diction errors was calculated from

N
§= Ee,(AT,)z (5)

where N is the number of the experimental points and where
¢(AT)) is defined by

€(AT,) = AT (observed) - AT {predicted) (6)
The residual standard deviation of the fit is s, and
so=[S/(N-2)]" 0]

To find the exact values of a°* and h, which minimize S, a
nonlinear function minimizer (fmins) available in Pc-MATLAB ( 76)
was used. To estimate the precision of a * and h, the jack-
knifing technique (see Appendix or ref 17) was used.

Results and Discussion

For dilute NaCl solutions, as well as for the solutions of some
other electrolytes, there are in the literature several very pre-
cisely measured freezing point sets. We based our estimates
of a* and h in the Hiicke! equation on the freezing point data
of Scatchard and Prentiss (4), because these workers have
succeeded to carry out their AT, measurement up to the mo-
lality of 1.2 mol-kg™" nearly with the precision comparable to
that of the best dilute sets. The AT, values of the other pub-
lished NaCl sets were used in our present calculations to verify
the validity of the resulting values of a® and h. By using error
plots and the jackknifing technique, we came to a conclusion
that the Hiickel equation is able to explain the experimental
points of Scatchard and Prentiss (4) up to the molality of 0.45
molkkg™" without any lack of fit. The obtained parameter values
with the corresponding jackknife standard deviation in par-
entheses are a* = 0.430 nm (0.0028 nm) and h = 1.19
(0.064). With these values, a deep minimum of Sin eq 5, 3.1
X 107 K?, is obtained corresponding to the value of 1.4 X 10~
K for sgineq 7.

The prediction errors, ¢(AT,) in eq 6, obtained by using our
Hiickel equation were calculated for all experimental data sets
found in the literature. For the dilute sets (i.e. where all mo-
lalities are less than about 0.1 mol-kg™"), we have published the
prediction errors based on the most accurate osmotic coeffi-
clent equations at 298 K (see ref 18). The predictions of these
equations agree well (i.e. within £0.0002 K) in dilute solutions
with the predictions of our new Hiickel equation, and therefore
we did not include the results of these dilute sets in the present
paper. The results of the calculations with the less dilute sets
are shown as error plots in the two graphs of Figure 1. The
only data set in which the measured AT, values do not agree
with he predicted values within experimental error is the one
of Craft and Van Hook (27). The discrepancy is, however, also
in this case so small that a systematic error of only -0.0008
K in their AT; measurements could explain it. Because the
estimation of freezing points from eq 4 requires iterative cal-
culations, we report in Table I the recommended AT, values
at several rounded molalities. The jackknife standard deviation
estimates for these values are presented in graph A of Figure
2.

Table II gives the activity and osmotic coefficients of NaCl
solutions calculated from eqs 1 and 2, respectively, with the
parameter values a* = 0.430 nm and A = 1.19. The re-
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Figure 1. The differences (AT ) between experimental freezing point
depressions and those predicted by using the Hiickel equation with a *
= 0.430 nm and h = 1.19. The sets of different investigators are
Indicated as follows: (#) Scatchard and Prentiss (4) (A) and Jahn (22)
(B); (X) Momicchioli et al. { 19) (A) and Harkins and Roberts (23) (B);
(+) Gibbard and Gossman (20) (A) and Craft and Van Hook (27) (B).

Table I. Recommended Freezing Point Depressions of NaCl
Solutions at Rounded Molalities

m/(molkg™) AT/K m/(molkg™) AT/K
0.01 0.0360 0.24 0.8192
0.02 0.0714 0.25 0.8528
0.03 0.1063 0.26 0.8864
0.04 0.1411 0.27 0.9200
0.05 0.1756 0.28 0.9535
0.06 0.2101 0.29 0.9871
0.07 0.2443 0.30 1.0206
0.08 0.2785 0.31 1.0542
0.09 0.3126 0.32 1.0877
0.10 0.3467 0.33 1.1212
0.11 0.3807 0.34 1.1547
0.12 0.4146 0.35 1.1883
0.13 0.4485 0.36 1.2218
0.14 0.4823 0.37 1.25563
0.15 0.5161 0.38 1.2888
0.16 0.5499 0.39 1.3223
0.17 0.5836 0.40 1.3558
0.18 0.6173 0.41 1.3893
0.19 0.6510 0.42 1.4228
0.20 0.6847 0.43 1.4563
0.21 0.7183 0.44 1.4898
0.22 0.7520 0.45 1.5233
0.23 0.7856

spective jackknife standard deviation estimates for the predicted
values are given in graphs B and C of Figure 2. Table II
contains for comparison the original activity coefficients re-
ported by Scatchard and Prentiss (4), the activity and osmotic
coefficients at 298 K reported in ref 1 (these values were based
on the measurements of Brown and Maclnnes (24) on con-
centration cells with transference), and the Platford osmotic
coefficlents based on Isoplestic determination at 273 K (5). Our
new osmotic coefficlents in Table I agree fairly well with those
of Platford, but our activity coefficients are smaller than the
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Figure 2. Jackknife standard devlation estimates of the freezing point
depressions o(AT ) (A), osmotic coefficlents a{(y) (B), and activity
coefficients o(7y.) (C), calculated by using the Hiickel equation with a *
= 0.430 nm and h = 1.19: (+) 6, - 8 in Appendix; (—*-) o{f) in the
equation of Appendix.

values of Scatchard and Prentiss. This discrepancy is probably
due to the fact that Scatchard and Prentiss had to treat their
data in a complicated way with nowadays unnecessary ap-
proximations (25). Qur osmotic coefficients at 273 K in dilute
solutions also agree well with those estimated from the elec-
trochemical data at 298 K. This result was expected because
the osmotic coefficients at 298 K are able to predict suc-
cessfully the freezing points of dilute solutions (see above).

The Hiickel equation presented above shows no lack of fit
up to the molality of 0.45 molkg™'. We also tested another
Hickel equation which was obtained from the points of more
concentrated solutions by the method described above. If the
Scatchard and Prentiss data points up to the molality of 0.81
mol-kg~' were included in the fit, our method gave slightly dif-
ferent parameter values: a* = 0.415 nm and h = 1.52. The
value of s, in eq 7 in this case is 0.00027 K. Desplte the fact
that this fit is also a very good fit, the pattern of the residuals
cannot in this case be regarded as random, so this Hiickel
equation is not able to explain the data within experimental
error.

We also compared the freezing point predictions of our
Hickel equations with those obtained by using the osmotic
coefficients estimated from the Pitzer equation (eq 3). The
prediction errors calculated with the different models (i.e. with
the two Hiickel equations and two Pitzer equations presented
above) from the Scatchard and Prentiss data up to the molality
of 1.0 molkg™' are presented in Figure 3. All predictions agree

Table II. Activity and Osmotic Coefficients of NaCl Solutions

m/m° v4(273K)° v.(298K)* v+(SP)° «(273K)* #(298K)* @(P1)?
0.005 0.9299 0.9274 0.9320 0.9769 0.9761

0.01 0.9057 0.9025 0.9087 0.9691 0.9681

0.02 0.8752 0.8714 0.8796 0.9595 0.9584

0.05 0.8252 0.821 0.8310 0.9445 0.9437

0.1 0.7811 0.778 0.7872 0.9322 0.9326 0.931
0.2 0.7337 0.7398 0.9208 0.923
0.3 0.7057 0.7119 0.9151 0.917
0.4 0.6861 0.6925 0.9119 0.913
0.45 0.6782 0.9108

S This study. ?Our laboratory (I). ¢Scatchard and Prentiss (SP) (4). ¢Platford (Pl) (5).
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Figure 3. The differences ¢ AT,) between experimental freezing point
depressions of Scatchard and Prentiss (4) and those predicted by the
different osmotic coefficlent models: (¥) Hiickel equation with pa-
rameters a * and h estimated from the set where m < 0.81 mokkg™',
a* = 0.415 nm, and h = 1.52; (X) Hiickel equation with parameters
a* and h estimated from the set where m < 0.45 molkg™, a* =
0.430 nm, and h = 1.19; (+) Pitzer equation with the parameter values
of Slivester and Pitzer (6); (O) Pitzer equation with the parameter
values of Thurmond and Brass (73).

with the experimental data up to the molality of 0.05 molkg™".
Above this molality the Pitzer equation with the parameter
values of Thurmond and Brass ( 73) gives too low AT values,
and above 0.15 mokkg™ the other Pitzer equation gives too high
AT, values. It is also clear according to this figure that the
Hiickel equation recommended by us for molalities less than
0.45 molkg~! should not be used above this value. The al-
ternative Hiickel equation, though It shows some systematic
residual pattern (not very obvious at the scale of this figure),
can be used quite safely up to 0.8 mokkg™', If not extremely
high accuracy is needed (below these limits, the errors are
probably not larger than £0.00086 K).

Glossary

a* lon-size parameter in Hiickel equation, m

A, Debye-Hiickel constant in Pitzer equation, at 273.15
K, 0.377 (kg/mol)""?

b constant in Pitzer equation, 1.2 (kg/mol)"?

c¢ third parameter in Pltzer equation

AC, difference between the molar heat capacities of

water as liquid and as solid at 101.325 kPa and
at 273.15 K, 37.87 J-K~"mol~’
h hydration number parameter in the Hiickel equation
AH;, molar enthalpy of fusion of water at 273.15 K,
6009.5 J-mot™!

m molality of solute, mol-kg™'

m° constant, 1 molkg™"

M, molar mass of water, 0.018 015 kg-mol™!

N number of points

R molar gas constants, 8.3145 J-K~'mol-"

8o residual standard deviation of the fit in eq 7, K
) sum of squared prediction errors in eq 5, K?
Ts freezing point of solution, K

T freezing point of pure water, 273.15 K

AT, freezing point depression of solution (=T,* - T,), K
Greek Letters

o Debye-Hiickel constant in the Hiickel equation, at
273.15 K, 1.1293 (kg/mol)"?
ap constant in the Pitzer equation, 2.0 (kg/mol)'/2

Debye-Hickel constant in the Hiickel equation, at
273.15 K, 3.245 (kg/mol)"/%nm™"
first parameter in the Pitzer equation
B! second parameter in the Pitzer equation
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Y+ mean activity coefficient of the solute

(AT prediction error of freezing point depression defined
by eq 6, K

7] osmotic coefficient

0 statistic to be estimated in the Appendix

0y, 8,, ... Jackknife estimates of § (Appendix)

0 mean value of jackknife estimates of § (Appendix)

a(f) standard deviation of jackknife estimates of § (Ap-
pendix)

Appendix: Estimation of Standard Devlation by Jackknife
Method

Jackknife is a nonparametric method which can be used to
estimate the standard deviation of any statistics calculated from
experimental data. The method is described, e.g., by Efron and
Gong (77) and is outlined below.

Let 8 = 0 (x4, x,, ..., Xy) be an estimator of any statistics
evaluated from a set of N measurements, x4, x,, ..., Xy. The
standard deviation of 6 is then obtained as follows. First N
estimates, 8., 0,, ..., 8y, of § are calculated from the data set
by deleting each of the N observations once, and only once,
from the data set. The mean of these estimates obtained from
the deleted data sets is 6 and § = 3 _0,/N. Now the jackknife
estimate for the standard deviation of the statistics 8 is

N-1X . - 172
() = [—N ?;2,(0,—0)2]

In our application, the data set consists of such freezing points
of Scatchard and Prentiss (4) where the molality is less than
0.45 mol-kg™! and N is therefore 18. We first calculated, ac-
cording to the method described above and in the text, 18
estimates of a* and h and then from the above-mentioned
equation the estimates of o(a *) and o(h). For the predicted
freezing point depressions, osmotic coefficients, and activity
coefficients, the 18 estimates of a * and h were used in the
evaluation of the jackknife standard deviations.
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