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Activity and Osmotic Coefficients of Dilute Sodium Chloride 
Solutions at 273 K 
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The c r y ~ p l c  data reported In the literature for aqueous 
NaCl rolutlonr were systematkally recalculated. In  these 
calculatlonr, It was found that most of the measured 
freezing polnts up to the mdaltty of 0.45 mol-kg-' can be 
predlcted wlthln experimental error by a two-parameter 
equation of the Huckel type. The two parameters of this 
Hiickel equatlon were determined from the rebuns of the 
most accurate freezing polnt measurements found for 
NaCl solutions In the literature. Wlth these parameter 
values, accurate estimates of the activity and osmotic 
coetficlents of NaCl rolutlons at 273 K can be obtained. 
These values, In addition to the recOmmended freezing 
polnt depressions, have been tabulated at rounded 
molalities. The standard devlatlons for the esthated 
values have been presented graphically and were 
computed by urlng the recently developed nonparametric 
Jackknife method. 

Introduction 

I t  is well-known that the most reliable actMty coefficients of 
dilute aqueous solutions of alkall-metal haHdes at different tem 
peratures are obtained from measurements on appropriate 
concentration cells with transference. In our previous studies 
( 7), it has been shown that the existing measured results of the 
cells of this kind at 298 K can be successfully predicted by a 
two-parameter equation of the Huckel type for the activity 
coefficients. In most cases, this concentratkm cell method has 
been used only In such solutions where the molality is less than 
about 0.1 mol-kg-l. When activities of less dilute alkali- 
metabsalt solutions are determined, the isopiestic method is 
most often used. The difficulty in applying this method is that 
the method needs a reference electrolyte and the activities of 
the interesting electrolyte akne cannot thus be studied. Anather 
potentially accurate method to study the thermodynamics of 
less dilute salt solutions is the cryoscopic method. This method 
was very popular at the beginning of thk centuy, and a number 
of precise cryoscopic data of dlfferent salt solutions have been, 
therefore, reported in the literature. 

In the wide recalculation work carried out by H a m  and Wu 
(2) and by Piker and Mayorga (3), the actMtles of unkrnivalent 
electrolytes were determined for aqueous solutions at 298 K. 
Because of the choice of this temperature, the freezing point 
data had to be 0 " e d  from the caiculatkns. No recent study, 
as far as we know, has been reported in literature where the 

existing freezing point results of uniunivalent electrolytes have 
been collected and critically analyzed. I n  the present paper, 
an analysis of this kind is performed for NaCl solutions. 

According to our understanding, the generally accepted ac- 
tivities for NaCl solutions at 273 K have not been reported in 
the literature. The most reliable values so far have been 
presented by Scatchard and Prentiss (4). on the basis of their 
freezing point determinations, and by Platford (5), on the basis 
of his isopiestic studies. The values of these two od@ns do not, 
unfortunately, agree with each other as well as desired. At the 
molalii of 0.1 mobkg-', for example, Scatchard and Prentlss 
presented the value of 0.9337 for the osmotic coefficient and 
the Platford value is 0.931. 

Siivester and Pltzer (6) have developed for the activities of 
NaCl solutions a very general multlparameter equation which 
covers wide ranges of molalities and temoeratures. We tested 
the validity of this equation at 273 K and used it to predict the 
measwed freezhg points of this electrolyte at different molallties 
(see below). According to our calculations, however, the pre- 
dictions of this equation are systematically too him above the 
molality of 0.15 mol-kg-'. At 0.8 mol-kg-', e.g., the enor is 
about -0.02 K, and this is a value which by far exceeds the 
experimental precision of the begt freezing point d e t e "  
presented in the literature (his precision has been probably well 
below f0.0005 K). 

In the present article, we apply the abovementkned Hiidtel 
equation to the existing freezing point data measured in NaCl 
solutions and show that even the most accurate experimental 
cryoscopic results of NaCl solutions can be predicted almost 
completely up to the molality of 0.45 mol-kg-' by the Hiickel 
equation. I n  addition, our preliminary calculations with the 
cryoscopic data reported by Scatchard and his co-workers (4 .  
7- 70) show that the acHvibies of all 21 electrolytes considered 
in those studies can ako be correlated to the tnoialities by a 
simple equatkn of the Hiickel type. Usually these actMties can 
be predicted within experimental m a t  leest up to the molality 
of 0.3 mol-kg-l, but in the best cases this equation applies 
satisfactorily near the molality of 1.5 M g l .  I n  the previous 
liierature, such simple equations as the Hiickel equation are 
seldom used above the molality of about 0.1 mol-kg-'. 

Equatknrr and Estlmation of the Hiickel Parameters 

The Hiickel equation for the acthrlty coefficient (rl) of a 
unwnivalent electrolyte can be written in the form presented 
by Pan (77) :  

0 1991 American Chemical Soclety 



Journal of Chemical and Engineering Date, Vol. 38, No. 4, 199 1 433 

To estimate the Huckel parameters a ' and h in eqs 1 and 
2 from the experimental data, the sum of squared prediction 
errors (S) was minimized as follows. Systematically varied 
values were given for a and h,  and the predictions of the AT, 
values were estimated from eq 4 (by using eq 2 for cp) with 
these parameter values for each experimental molality. For 
each pair of the values of a and h ,  the sum of squared pre- 
diction errors was calculated from 

From eq 1, the following equation can be derived for the os- 
motic coefficient cp: 

(1 + pa'm1'2)-1] + Ml(h - 1)m (2) 

In eqs 1 and 2, m k the molality of the solution, M ,  is the molar 
mass of water (=0.018015 kgmol-'), and a and B are the 
Debye-Huckel constants (on the molality scale at 273 K their 
values are, according to Archer and Wang ( 72), 1.1293 (kg/ 

and 3.245 (kg/mol)''* nm-', respectively). In  these 
equations, moreover, the two parameters depending on the 
electrolyte are the ion-size parameter a and the hydration 
number h .  On the other hand, the Pitzer equation (6) for the 
osmotic coefficient of a uni-univalent electrolyte has the form 

c p =  
A f l  

1 -  + ($ + j31e-ufl"Z)(m/mo) + C'+'(m/m0)2 
1 + bm1I2 

(3) 

I n  this equation m0 = 1 mobkg-l, b = 1.2 (kg/mol)1'2, ap = 
2.0 (kg/mol)1'2, and, at 273 K, A, = 0.377 (kg/mol)1'2. Ac- 
cording to Silvester and Pitzer (6 ) ,  the electrolyte parameters 
p, pl, and C, depend on the temperature by equations con- 
taining altogether 12 parameters. With the values tabulated in 
that paper for these parameters, the following values can be 
calculated for p, @', and Cv at 273 K: 0.0532, 0.2496 and 
0.0044, respectively. Another recent application of the Pitzer 
equation has been presented by Thurmond and Brass (13) in 
their calorimetric study concemlng supercoded NaCl solutions. 
These workers present for the parameters p, @l, and C, such 
equations which contain entirely 15 parameters. The following 
values can be obtained from these equations at 273 K: $ = 
0.0442, 8' = 0.1893, and Cv = 0.0061. 

When osmotic coefficient cp is used, the following relationship 
can be thermodynamically derived between the freezing point 
depression (AT,) and the molality of the solution: 

2RTf+ M ,mcp 

2RMlmcp + AH,/T,* 
ACpATf + AC,(T,' - AT,) In [(T,' - AT,) /T, ' ]  

2RMlmcp + AHfUI/T,' 

AT, = T,' - Tf  = + 

(4) 

where TI' is the freezing point of pure water (Le. 273.15 K) and 
T, that of the solution, AH,,,, is the molar enthalpy of fusion of 
water at T,' p6009.5 J-mol-'; see Osborne (74)), ACp is the 
dtfference between the molar heat capacities of water as liquid 
and as sold at 101.325 kPa and at T,' (this difference is 37.87 
J*K-'*mol-'; see Osborne ( 74) and Osborne et al. ( 75)), and R 
Is the gas constant (~8.3145 J-K-'.mol-l). We verified that 
within the limited temperature range used in the freezing point 
experiments, AC, can be regarded as constant since the in- 
fluence of the temperature correctins of AC, on the AT, 
values is insignificant. 

The advantage of sq 4 in freezing point data analysis is that 
it allows the direct comparison of the predicted values to the 
observed experimental values. I f  osmotic coefficients or some 
other derived values were used to compare the fit results with 
the experimental data, as often is done, there is always a 
danger that some relevant information is lost. A minor disad- 
vantage of the form of eq 4 is that AT, is also on the right-hand 
side and some iterative calculations are, therefore, needed 
when the equation is used to estimate this quantity. 

N 

/=1 
S = xe,(AT,)2 

where N is the number of the experimental points and where 
€(ATl) is defined by 

E( A T,) = A Tdobserved) - A Tdpredicted) 

so = [ S / ( N  - 2)I1l2 

(6) 

The residual standard deviation of the fit is so, and 

(7) 

To find the exact values of a and h ,  which minimize S, a 
nonlinear function minimizer (fmins) available in PC-MATLAB (76) 
was used. To estimate the precision of a ' and h ,  the jack- 
knifing technique (see Appendix or ref 17) was used. 

Results and Dlscusslon 

For dilute NaCl solutions, as well as for the solutions of some 
other electrolytes, there are in the literature several very pre- 
ciseiy measured freezing point sets. We based our estimates 
of a + and h in the Huckel equation on the freezing point data 
of Scatchard and Prentiss (4 ) ,  because these workers have 
succeeded to carry out their AT, measurement up to the mo- 
lality of 1.2 mobkg-l nearly with the precision comparable to 
that of the best dilute sets. The AT, values of the other pub- 
lished NaCl sets were used in our present calculatlons to verify 
the validity of the resulting values of a and h . By using error 
plots and the jackknifing technique, we came to a conclusion 
that the Huckei equation is able to explain the experimental 
points of Scatchard and Prentiss (4) up to the molality of 0.45 
mobkg-' without any lack of fit. The obtained parameter values 
with the corresponding jackknife standard deviation in par- 
entheses are a * = 0.430 nm (0.0028 nm) and h = 1.19 
(0.064). With these values, a deep minimum of S in eq 5, 3.1 
X 1 0-7 K2, is obtained corresponding to the value of 1.4 X 1 O4 
K for so in eq 7. 

The prediction errors, €(AT,) in eq 6, obtained by using our 
Huckei equation were calculated for all experimental data sets 
found in the literature. For the dilute sets (i.e. where all mo- 
lalities are less than about 0.1 mol-kg-l), we have published the 
prediction errors based on the most accurate osmotic coeffi- 
cient equations at 298 K (see ref 18). The predictions of these 
equations agree well (i.e. within f0.0002 K) in dilute solutions 
with the predictions of our new Huckel equation, and therefore 
we did not include the results of these dilute sets in the present 
paper. The resutts of the calculations with the less dilute sets 
are shown as error plots in the two graphs of Figure 1. The 
only data set in which the measured AT, values do not agree 
with he predicted values within experimental error is the one 
of Craft and Van Hook (27). The discrepancy is, however, also 
in this case so small that a systematic error of only -0.0008 
K in their AT, measurements could explain it. Because the 
estimation of freezing points from eq 4 requires iterative cal- 
culations, we report in Table I the recommended AT, values 
at several rounded molaties. The jackknife standard deviation 
estimates for these values are presented in graph A of Figure 
2. 

Table I1 gives the activity and osmotic coefficients of NaCl 
solutions calculated from eqs 1 and 2, respectively, with the 
parameter values a = 0.430 nm and h = 1.19. The re- 
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= 0.430 nm and h = 1.19. The sets of different investigators are 

I 
4~ 0.1 0.2 0.3 0.4 0.5 0.6 

m/mol.kg-' 

Table I. Recommended Freezing Point Depressions of NaCl 
Solutions at Rounded Molalities 

m/(mol.kg-') ATf/K m/(mol.kg-') ATf/K 
0.01 0.0360 0.24 0.8192 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 

0.0714 
0.1063 
0.1411 
0.1756 
0.2101 
0.2443 
0.2785 
0.3126 
0.3467 
0.3807 
0.4146 
0.4485 
0.4823 
0.5161 
0.5499 
0.5836 
0.6173 
0.6510 
0.6847 
0.7183 
0.7520 
0.7856 

0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 

0.8528 
0.8864 
0.9200 
0.9535 
0.9871 
1.0206 
1.0542 
1.0877 
1.1212 
1.1547 
1.1883 
1.2218 
1.2553 
1.2888 
1.3223 
1.3558 
1.3893 
1.4228 
1.4563 
1.4898 
1.5233 

spective jackknife standard deviation estimates for the predicted 
values are given in graphs B and C of Figure 2. Table I1 
contains for comparison the original activity coefficients re- 
ported by Scatchard and Prentiss (4 ) ,  the activity and osmotic 
coefficients at 298 K reported in ref 1 (these values were based 
on the measurements of Brown and MacInnes (24) on con- 
centration cells with transference), and the Platford osmotic 
coefficients based on isopiestic determination at 273 K (5). Our 
new osmotic coefficients in Table I1 agree fairly well with those 
of Platford. but our activity coefficients are smaller than the 

J 
0 1  0 2  0 3  0.4 0.5 0.6 

m/mo l .  kg-' 

Figure 2. Jackknife standard deviation estimates of the freezing point 
depressions a(AT,) (A), osmotic coefficlents u(p) (B), and activity 
coefficients u((rt) (C), calculated SW u&hg the Hkkei equation wlth a 
= 0.430 nm and h = 1.19: (+) 6, - 6 in Appendix: (-*-) u(6) in the 
equation of Appendix. 

values of Scatchard and Prentiss. This discrepancy is probably 
due to the fact that Scatchard and Prentiss had to treat their 
data in a complicated way with nowadays unnecessary ap- 
proximations (25). Our osmotic coefficients at 273 K in dilute 
solutions also agree well with those estimated from the elec- 
trochemical data at 298 K. This result was expected because 
the osmotic coefficients at 298 K are able to predict suc- 
cessfully the freezing points of dilute solutions (see above). 

The Huckel equation presented above shows no lack of fit 
up to the molality of 0.45 mol-kg-l. We also tested another 
Huckel equation which was obtained from the points of more 
concentrated solutions by the method described above. I f  the 
Scatchard and Prentiss data points up to the molality of 0.81 
mobkg-l were included in the fit, our method gave slightly dlf- 
ferent parameter values: a = 0.415 nm and h = 1.52. The 
value of so in eq 7 in this case is 0.000 27 K. Despite the fact 
that this fit is also a very good fit, the pattern of the residuals 
cannot in this case be regarded as random, so this HUckel 
equation is not able to explain the data within experimental 
error. 

We also compared the freezing point predictions of our 
Huckel equations with those obtained by using the osmotic 
coefficients estimated from the Pitzer equation (eq 3). The 
prediction errors calculated with the different models (Le. with 
the two Huckei equations and two Pltzer equations presented 
above) from the Scatchard and Prenttss data up to the molality 
of 1.0 moi.kgl are presented in Figure 3. Ail predlcokns agree 

Table XI. Activity and Osmotic Coefficients of NaCl Solutions 

0.005 0.9299 0.9274 0.9320 0.9769 0.9761 
0.01 0.9057 0.9025 0.9087 0.9691 0.9681 
0.02 0.8752 0.8714 0.8796 0.9595 0.9584 
0.05 0.8252 0.821 0.8310 0.9445 0.9437 
0.1 0.7811 0.778 0.7872 0.9322 0.9326 0.931 
0.2 0.7337 0.7398 0.9208 0.923 
0.3 0.7057 0.7119 0.9151 0.917 
0.4 0.6861 0.6925 0.9119 0.913 
0.45 0.6782 0.9108 

"This study. bOur laboratory (1).  'Scatchard and Prentiss (SP) (4 ) .  dPlatford (Pl) (5).  

m/mo ~*(273K)" y ~ ( 2 9 8 K ) ~  r*(SP)' ~(273K)" ,p(298Klb ,p(Pl)d 
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Y t  mean activity coefficient of the solute 
€(AT,) prediction error of freezing point depression deflned 

cp osmotic coefficient 
e -  statistic to be estimated in the Appendix 
el, f12, ... jackknife estimates of 6 (Appendix) 
e mean value of jackknife estimates of 6 (Appendix) 
a(& standard deviation of jackknife estimates of e (Ap- 

Appendix: Estimatlon of Standard Devlatlon by Jackknife 
Method 

Jackknife is a nonparametric method which can be used to 
estimate the standard deviation of any statistics calculated from 
experimental data. The method is described, e.g., by Efron and 
Gong (77) gnd is outlined below. 

Let 6 = 0 (xl, x 2 ,  ..., x,,,) be an estimator of any statistics 
evaluated from a set of N measurements, xl, x2,  ..., x,. The 
standard de_via_tion of) is then obtained as follows. First N 
estimates, el, e2, ..., e,,,, of 8 are calculated from the data set 
by deleting each of the N observations once, and only once, 
from the data set. The tpan cf these-estimates obtained from 
the deleted data sets is 8 and 8 = CB,/N. Now the jackknife 
estimate for the standard deviation of the statistics B is 

by eq 6, K 

pendix) 

4 

o,ozi 0.01 k 

1 -0.01 

-0.02 * !  

ion-size parameter in Huckel equation, m 
Debye-Hijckd constant in mer equation, at 273.15 

constant in Pitzer equation, 1.2 (kg/mol)112 
third parameter in Pitzer equation 
difference between the molar heat capacities of 

water as liquid and as solid at 101.325 kPa and 
at 273.15 K, 37.87 J*K-‘.mol-’ 

hydration number parameter in the Huckel equation 
molar enthalpy of fusion of water at 273.15 K, 
6009.5 J.mo1-l 

molality of solute, mol-kg-’ 
constant, 1 mol-kg-l 
molar ma85 of water, 0.018015 kg-mol-l 
number of points 
molar gas constants, 8.3145 J.K-’*mol-l 
residual standard deviation of the fit in eq 7, K 
sum of squared prediction errors in eq 5, K2 
freezing point of solution, K 
freezing point of pure water, 273.15 K 
freezing point depression of solution (= T,* - Tf), K 

K, 0.377 (kg/mol)112 

&eek Letters 
ff Debye-Huckel constant in the Huckel equation, at 

273.15 K, 1.1293 (kg/mol)lt2 
constant in the Pitzer equation, 2.0 (kg/mol)112 
Debye-Hiickel constant in the Huckel equation, at 
273.15 K, 3.245 (kg/mol)112mm-’ 

first parameter in the Pitzer equation 
second parameter in the Pitzer equation 

7 
P1 

In  our application, the data set consists of such freezing points 
of Scatchard and Prentiss (4) where the molality is less than 
0.45 mol-kg-l and N is therefore 18. We first calculated, ac- 
cording to the method described above and in the text, 18 
estimates of a *  and h and then from the above-mentioned 
equation the estimates of a(a +) and a(h). For the predicted 
freezing point depressions, osmotic coefficients, and activity 
coefficients, the 18 estimates of a and h were used in the 
evaluation of the jackknife standard deviations. 
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